Per-Pixel Classification is Not All You Need for Semantic Segmentation

Bowen Cheng, Alexander G. Schwing, Alexander Kirillov ---- NIPS 2021

Fang Zhiyuan 2021.12/05

Prior knowledge

Per-pixel classification vs. mask classification

- Per-pixel classification applies the same classification loss to each location
 - Often used in Semantic Segmentation
- Mask classification predicts a set of binary masks and assigns a single class to each mask
 - Often used in Instance Segmentation

- Semantic/Panoptic Segmentation algorithm based on Mask Classification
- Converts any existing per-pixel classification model into a mask classification
- Solves both semantic- and instance-level segmentation tasks in a unified manner
 - Do not change the model, losses, and training procedure

Mask classification formulation

- Partitioning/grouping the image into N regions
- Output $z = \{(p_i, m_i)\}_{i=1}^N$
 - $p_i \in \Delta^{K+1}$ is the probability distribution, K categories + \emptyset (no object)
 - $m_i \in [0,1]^{H \times W}$
- Ground truth segment $z^{gt} = \left\{ \left(c_i^{gt}, m_i^{gt}\right) \middle| c_i^{gt} \in \{1, \cdots, K\}, m_i^{gt} \in \{0, 1\}^{H \times W} \right\}_{i=1}^{N_{gt}}$
- lacktriangledown Associating each region as a whole with some distribution with matching σ
- $\blacksquare \text{ Loss: } \mathcal{L}_{mask-cls}(z,z^{gt}) = \sum_{j=1}^{N} \left[-\log p_{\sigma(j)}(c_j^{gt}) + 1_{c_j^{gt} \neq \emptyset} \mathcal{L}_{mask}(m_{\sigma(j)},m_j^{gt}) \right]$

- Transformer module
- Pixel-level module
- Segmentation module (training)
 - Linear classify -> class probability predictions $\{p_i \in \Delta^{K+1}\}_{i=1}^N$
 - MLP -> mask embeddings $\varepsilon_{mask} \in C_{\varepsilon} \times N$
 - lacksquare \mathcal{L}_{cls} : Cross-entropy loss, $\mathcal{L}_{mask} = \lambda_{focal} \cdot l_{focal} + \lambda_{dice} \cdot l_{dice}$

- Segmentation module (inference)
- General
 - For each output $\{(p_i, m_i)\}_{i=1}^N$,
 - $= \underset{i:c_i \neq \emptyset}{\operatorname{arg max}} \, p_i(c_i) \cdot m_i[h, w], \, c_i = \underset{c \in \{1, \dots, K, \emptyset\}}{\operatorname{arg max}} \, p_i(c)$
 - Post process for panoptic segmentation: filter out low-confidence, NMS

Semantic

Drop Ø and simple matrix multiplication

Dataset

- Semantic Segmentation
 - ADE20K, COCO-Stuff-10K, Cityscapes, Mapillary Vistas
 - 8 V100 GPUs
- Panoramic segmentation
 - COCO (64 V100 GPUs)
 - ADE20K-Panoptic (8 V100 GPUs)

Semantic Segmentation on ADE20K

	method	backbone	crop size	mIoU (s.s.)	mIoU (m.s.)	#params.	FLOPs	fps
SS	OCRNet [50]	R101c	520×520	2	45.3	-	12	6 <u>2</u> 6
CNN backbones	DeepLabV3+ [9]	R50c	512×512	44.0	44.9	44M	177G	21.0
ckt		R101c	512×512	45.5	46.4	63M	255G	14.2
I ba	MaskFormer (ours)	R50	512×512	44.5 ± 0.5	46.7 ± 0.6	41M	53G	24.5
Z		R101	512×512	45.5 ± 0.5	47.2 ± 0.2	60M	73G	19.5
		R101c	512×512	46.0 \pm 0.1	48.1 ± 0.2	60M	80G	19.0
	SETR [53]	ViT-L [†]	512×512	-	50.3	308M	1941	9-9
sones	Swin-UperNet [29, 49]	Swin-T	512×512	-	46.1	60M	236G	18.5
		Swin-S	512×512		49.3	81M	259G	15.2
ckł		Swin-B [†]	640×640		51.6	121M	471G	8.7
r ba		Swin-L [†]	640×640	2	53.5	234M	647G	6.2
Transformer backbones	MaskFormer (ours)	Swin-T	512×512	46.7 ± 0.7	48.8 ± 0.6	42M	55G	22.1
		Swin-S	512×512	49.8 ± 0.4	51.0 ± 0.4	63M	79G	19.6
		Swin-B	640×640	51.1 ± 0.2	52.3 ± 0.4	102M	195G	12.6
		Swin-B [†]	640×640	52.7 ± 0.4	53.9 ± 0.2	102M	195G	12.6
		Swin-L [†]	640×640	54.1 \pm 0.2	55.6 ± 0.1	212M	375G	7.9

Compare with baseline

_		-	.					70.70
	Cityscapes (19 classes)		ADE20K (150 classes)		COCO-Stuff (171 classes)		ADE20K-Full (847 classes)	
	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ^{St}	mIoU	PQ St
PerPixelBaseline	77.4	58.9	39.2	21.6	32.4	15.5	12.4	5.8
PerPixelBaseline+	78.5	60.2	41.9	28.3	34.2	24.6	13.9	9.0
MaskFormer (ours)	78.5 (+0.0)	63.1 (+2.9)	44.5 (+2.6)	33.4 (+5.1)	37.1 (+2.9)	28.9 (+4.3)	17.4 (+3.5)	11.9 (+2.9)

Panoptic Segmentation on COCO

	method	backbone	PQ	PQ^{Th}	PQ^{St}	SQ	RQ	#params.	FLOPs	fps
backbones	DETR [4]	R50 + 6 Enc	43.4	48.2	36.3	79.3	53.8	-	-	-
	MaskFormer (DETR)	R50 + 6 Enc	45.6	50.0 (+1.8)	39.0 (+2.7)	80.2	55.8	-	~	-
	MaskFormer (ours)	R50 + 6 Enc	46.5	51.0 (+2.8)	39.8 (+3.5)	80.4	56.8	45M	181G	17.6
	DETR [4]	R101 + 6 Enc	45.1	50.5	37.0	79.9	55.5	-	-	1.7
CNN	MaskFormer (ours)	R101 + 6 Enc	47.6	52.5 (+2.0)	40.3 (+3.3)	80.7	58.0	64M	248G	14.0
nes	Max-DeepLab [42]	Max-S	48.4	53.0	41.5	- 1	-	62M	324G	7.6
Transformer backbones		Max-L	51.1	57.0	42.2	-	-	451M	3692G	-
	MaskFormer (ours)	Swin-T	47.7	51.7	41.7	80.4	58.3	42M	179G	17.0
		Swin-S	49.7	54.4	42.6	80.9	60.4	63M	259G	12.4
		Swin-B	51.1	56.3	43.2	81.4	61.8	102M	411G	8.4
		Swin-B [†]	51.8	56.9	44.1	81.4	62.6	102M	411G	8.4
		Swin-L [†]	52.7	58.5	44.0	81.8	63.5	212M	792G	5.2

Ablation Study

(a) Per-pixel vs. mask classification.

	mIoU	PQ^{St}
PerPixelBaseline+	41.9	28.3
MaskFormer-fixed	43.7 (+1.8)	30.3 (+2.0)

(b) Fixed vs. bipartite matching assignment.

	mIoU	PQ^{St}
MaskFormer-fixed	43.7	30.3
MaskFormer-bipartite (ours)	44.2 (+0.5)	33.4 (+3.1)

