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Figure 1: The state-of-the-art VOS methods (e.g., [°, ©{']) process multi-object scenarios in a
post-ensemble manner (a). In contrast, our AOT associates and decodes multiple objects uniformly
(b), leading to better efficiency (c).



[dentity Assignment

* [dentity Embedding
E=ID(Y,D)=YPD,

V' = AttID(Q, K,V,Y|D)
Att(Q, K,V + ID(Y, D)) = Att(Q, K,V + E),
* |[dentity Decoding

Y’ = softmax(PF? (V")) = softmax(PL"),

Identity Bank
Mx vector

________________________

Assign N
identities
(N<M)
HXW XN
N-object

Mask Identification

Embedding

HXW XC )




Long-short term transtormer (LSTT)

* Long Term Attention
AttLT (X}, XM, Y™) = AtID(XIWE, XPWE XPWY, Yy™|D),

Xm = Concat(X;"",..., X;"") and Y™ = Concat(Y™,...,Y™7T)

* Short Term Attention "
AttST (X[, X', Y |p) = ARLT (X[, Xy Vil (o)

X? = Concat(X!™1, ..., X™™) and Y™ = Concat(Y'™ L, ..., Yt™)
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where X f’p € R'™Y is the feature of X/ at location p, N'(p) is a A x ) spatial neighbourhood
centered at location p, and thus X N (p) and Y}‘j\[(p) are the features and masks of the spatial-temporal

neighbourhood, respectively, with a shape of nA? x C or nA? x N.
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Overview Architecture

* Encoder
* MobileNet V2

* Decoder
* FPN
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(a) YouTube-VOS

(b) DAVIS 2017

Seen Unseen Methods J&E&F T F  FPS

Methods J&F J F J F FPS Validation 2017 Split
Validation 2018 Split STM [ 7] (Y) 81.8 792 843 3.1°
AGicverio [ 1] 661 678 - 608 - - CEBILVI(Y) 8.9 79.3 845 5.9
PReMircovis [7] 669 714 759 56.5 63.7 0.17 SSTIT(Y) 8.5 79 &.1 -
BoLTwxvio [12] 711 716 - 643 - 074 EGMN[O](Y) 828 802 852 25
STMucovio [7] 794 797 842 728 809 -  KMN[] 76.0 742 718 42
EGMNzcovao [20] 802 807 85.1 74.0 809 -  KMN [40](Y) 82.8 80.0 856 4.2°
KMNtcovao) [40] 81.4 814 85.6 753 833 - CFBI+ [00] (Y) 829 80.1 857 5.6
CEBlieccevao) [5Y] 81.4 81.1 85.8 753 834 34 AOT-T(Y) 782 75.8 80.6 39.1
LWLecovao [7] 815 804 849 764 844 -  AOTS 792 764 820 29.0
SSTicveran [ ] 817 812 - 760 - -  AOTS(Y) 81.0 785 834 29.0
CFBI+meavion [00] 82.8 81.8 86.6 77.1 85.6 4.0 AOT-B (Y) 82.1 794 848 227
AOT-T 80.2 80.1 84.5 74.0 822 322 AOT-L(Y) 83.0 803 85.7 189

AOT-S 82.6 82.0 86.7 76.6 85.0 22.1 . .

AOT-B 832 82.6 87.4 77.3 85.6 17.0 Testing 2017 Split
AOT-L 83.7 82.5 87.5 779 86.7 152 STM*[’](Y) 722 693 752 -
— . CFBI [7] (Y) 750 714 787 53
Validation 2019 Split CFBI* [(°1(Y) 766 730 801 209
CFBIrcovao [50]  81.0 80.6 85.1 752 83.0 3.4 KMN*[10](Y) 772 741 803 -
SSTicver2l [15] 81.8 809 - 766 - - CFBI+* [00](Y) 78,0 744 816 34
CEBI+reavpn [00]  82.6 81.7 86.2 77.1 852 40 AOTT (Y) 69.3 660 725 39.1
AOLT 79.7 79.6 83.8 73.7 81.8 322 AOTS (Y) 73.6 697 774 29.0
AOT-S 82.2 81.3 859 76.6 849 22.1 AOT-B (Y) 755 718 79.1 227
AOT-B 833 82.5 87.0 77.8 86.0 17.0 AOT-L (Y) 784 748 82.1 189
AOT-L 83.6 822 869 78.3 869 152 AOT-L* (Y) 788 753 823 127

AOT-Tiny:L=1, m=1
AOT-Small:L=2, m=1
AOT-Base:L=3, m=1

AOT-Large:L=3,

AQOT-Base 5 times
faster than CFBI
(15.2fps vs 3.4fps)



Ablation study

Table 3: Ablation study. The experiments are based on AOT-S and conducted on the validation 2018
split of YouTube-VOS [~ "] without pre-training on synthetic videos. Self: the position embedding
type used 1in the self-attention. Rel: use relative positional embedding [ | ] on the local attention.

(a) Identity number (b) Local window size (c) Local frame number

M j&f jSCC?’L Junseen A j&f jSCC“.ﬂ, JUTLSCCH n J&F jSCC?’L junseen

10 80.3 80.6 73.7 7 80.3 80.6 73.7 1 80.3 80.6 73.7
15 79.0 794 72.1 5 788 795 71.9 2 80.0 79.8 73.7
20 783 794 70.8 3 783 793 70.9 3 79.1 80.0 72.2
30 77.2 785 70.2 0 743 749 67.6 0 743 749 67.6

(d) LSTT block number (e) Positional embedding

L J&f‘ JSCCR J'unsccn FPS Param Self RC] J&f jsccn Jﬂ.ﬂsc‘.ﬂﬂ

2 80.3 80.6 73.7 22.1 7.0M sine v 803 80.6 73.7
3 809 8l1.1 740 17.0 8.3M none v 80.1 804 73.5
1 779 788 71.0 322 5.7TM sine - 79.7 80.1 72.9




Interpretability — Identity Bank

(a) M = 10 (default) (b) M =15 (c) M =20 (d)y M = 30

Figure 4: Visualization of the cosine similarity between every two of M identification vectors in the
identity bank. We use the form of a M x M symmetric matrix to visualize all the cosine similarities,
and the values on the diagonal are all equal to 1. The darker the green color, the higher the similarity.
In the case of M = 10, the similarities are stable and balanced. As the vector number M increases,
The visualized matrix becomes less and less smooth, which means the similarities become unstable.



Interpretability — Long term & Short term
Memory
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Thanks for watching!



