Segmentation Transformer: Object-Contextual Representation for Semantic Segmentation

——from arxiv2021 By CAS

Speaker: Gong, Qiqi

Overview

- Context aggregation
- Three steps:
 - Learn object regions under the supervision of GT segmentation (a coarse soft segmentation computed from a deep network)
 - Estimate the representation for each object region (object region representation)
 - Augment the erpresentation of each pixel with object-contextual representation
- OCR is the weighted aggregation of all the object region representations with the weights calculated according to the relations between pixels and object regions

Motivation

• The label of a pixel is the bategory of the object that pixel belongs to

Fig. 2: Illustrating the multi-scale context with the ASPP as an example and the OCR context for the pixel marked with . (a) ASPP: The context is a set of sparsely sampled pixels marked with . The pixels with different colors correspond to different dilation rates. Those pixels are distributed in both the object region and the background region. (b) Our OCR: The context is expected to be a set of pixels lying in the object (marked with color blue). The image is chosen from ADE20K.

- Overview
 - Structurizes all the pixels in image into K soft object regions
 - Represent each object region by aggregrating all the pixels in the kth object region
 - Augments the representation for each pixel by aggregating the K object region representations (consider all K regions)

$$\mathbf{y}_i = \rho(\sum_{k=1}^K w_{ik} \delta(\mathbf{f}_k)), \tag{3}$$

where \mathbf{f}_k is the representation of the kth object region, w_{ik} is the relation between the ith pixel and the kth object region. $\delta(\cdot)$ and $\rho(\cdot)$ are transformation functions.

- Soft object regions (pink box)
 - Compute K object regions from an intermediate representation output from a backbone (ResNet or HRNet)
 - CE Loss
 - Each entry indicates the degree that corresponding pixel belongs to class k

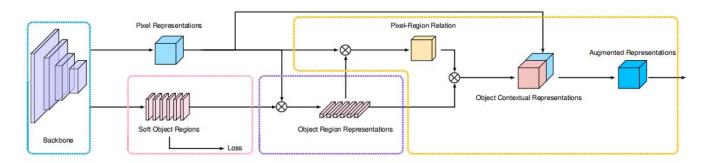


Fig. 3: Illustrating the pipeline of OCR. (i) form the soft object regions in the pink dashed box. (ii) estimate the object region representations in the purple dashed box; (iii) compute the object contextual representations and the augmented representations in the orange dashed box. See Section 3.2 and 3.3 for more details.

Object region representations (purple box)

$$\mathbf{f}_k = \sum_{i \in \mathcal{I}} \tilde{m}_{ki} \mathbf{x}_i. \tag{4}$$

Here, \mathbf{x}_i is the representation of pixel p_i . \tilde{m}_{ki} is the normalized degree for pixel p_i belonging to the kth object region. We use spatial softmax to normalize each object region \mathbf{M}_k .

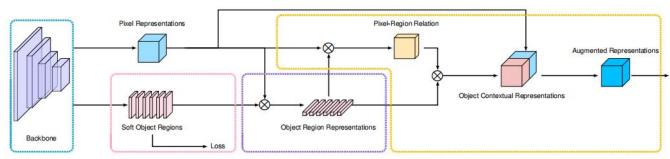


Fig. 3: Illustrating the pipeline of OCR. (i) form the soft object regions in the pink dashed box. (ii) estimate the object region representations in the purple dashed box; (iii) compute the object contextual representations and the augmented representations in the orange dashed box. See Section 3.2 and 3.3 for more details.

- Object contextual representations (orange box)
 - Compute relation between each pixel and each object region (yellow cube)

$$w_{ik} = \frac{e^{\kappa(\mathbf{x}_i, \mathbf{f}_k)}}{\sum_{j=1}^{K} e^{\kappa(\mathbf{x}_i, \mathbf{f}_j)}}.$$
 (5)

Here, $\kappa(\mathbf{x}, \mathbf{f}) = \phi(\mathbf{x})^{\top} \psi(\mathbf{f})$ is the unnormalized relation function, $\phi(\cdot)$ and $\psi(\cdot)$ are two transformation functions implemented by 1×1 conv $\to BN \to ReLU$. This is inspired by self-attention [61] for a better relation estimation.

Compute OCR according
to Eq (3) (in slide 4)

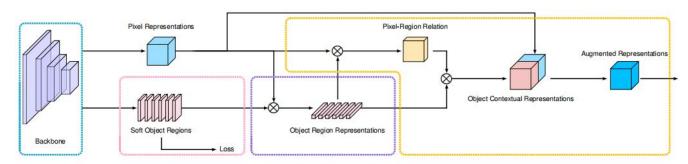


Fig. 3: Illustrating the pipeline of OCR. (i) form the soft object regions in the pink dashed box. (ii) estimate the object region representations in the purple dashed box; (iii) compute the object contextual representations and the augmented representations in the orange dashed box. See Section 3.2 and 3.3 for more details.

Augmented Representation (red box)

$$\mathbf{z}_i = g([\mathbf{x}_i^\top \ \mathbf{y}_i^\top]^\top). \tag{6}$$

where $g(\cdot)$ is a transform function used to fuse the original representation and the object contextual representation, implemented by 1×1 conv \rightarrow BN \rightarrow ReLU.

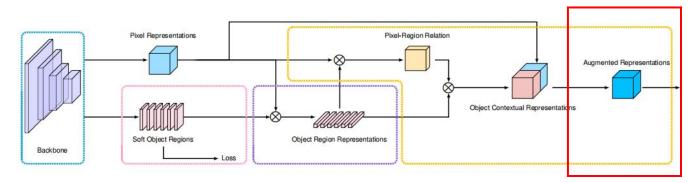
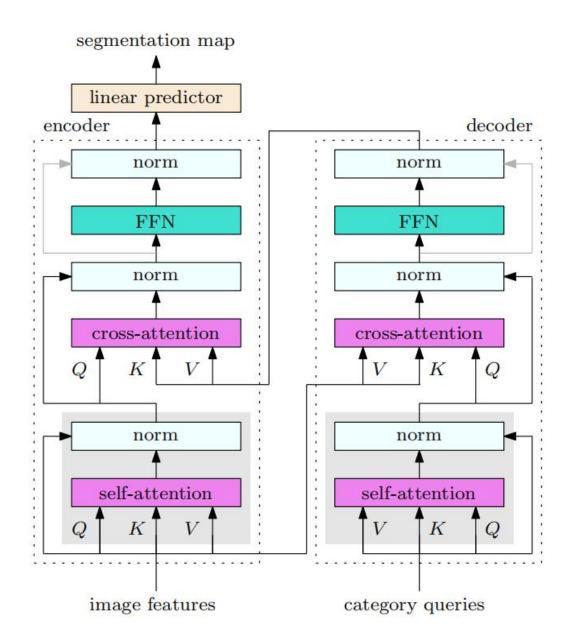


Fig. 3: Illustrating the pipeline of OCR. (i) form the soft object regions in the pink dashed box. (ii) estimate the object region representations in the purple dashed box; (iii) compute the object contextual representations and the augmented representations in the orange dashed box. See Section 3.2 and 3.3 for more details.

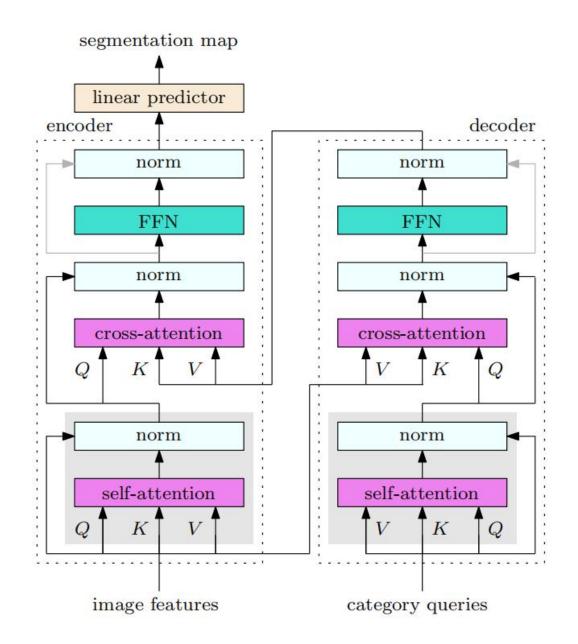
Method - Use Transformer

- Segmentation Transformer
 - Decoder:
 - Extract soft object region
 - Compute object region represent.
 - Keys and values: image features
 - Quries: K category quries



Method - Use Transformer

- Segmentation Transformer
 - Encoder:
 - Aggregating object region representations



Experiments

- Cityscapes, ADE20K, LIP, PASCAL-Context, COCO-Stuff
- HRNet + OCR won 1st on Cityscapes before DDL of ECCV2020

Table 1: Complexity comparison. We use input feature map of size $[1 \times 2048 \times 128 \times 128]$ to evaluate their complexity during inference. The numbers are obtained on a single P40 GPU with CUDA 10.0. All the numbers are the smaller the better. Our OCR requires the least GPU memory and the least runtime.

Method	Parameters▲	Memory▲	FLOPs A	Time▲	
PPM	23.1M	792M	619G	99ms	
ASPP	15.5M	284M	492G	97 ms	
OCR	10.5M	202 M	340G	45ms	

Experiments

- Comparison with SOTA
 - Table 5 in paper
 - Win first 3 places on all datasets

Method	Baseline	Stride		Cityscapes (w/o coarse	Cityscapes (w/coarse)	ADE20K	LIP	PASCAL Context	COCO-Str
			Simple b		K., comes)			Context	
PSPNet [80]	ResNet-101	8×	M	78.4	81.2	43.29		47.8	
DeepLabv3 [6]	ResNet-101	8×	M	-	81.3		-	-	-
PSANet [81]	ResNet-101	8×	R	80.1	81.4	43.77			-
SAC [79]	ResNet-101	8×	M	78.1	-:	44.30	- 51	-	-
AAF [29]	ResNet-101	8×	R	79.1	20	140	21		-
DSSPN [41]	ResNet-101	8×	1041	77.8	23	43.68	23	-	38.9
DepthSeg [32]	ResNet-101	8×	104	78.2	-20	(4)	21	-	-
MMAN [48]	ResNet-101	8×	1926	62	22	343	46.81	2	- 62
JPPNet [39]	ResNet-101	8×	M	- 62	22	140	51.37	-	- 0
EncNet [76]	ResNet-101	8×	1820	12	29	44.65		51.7	12
GCU [38]	ResNet-101	8×	R	12	29	44.81	29	-	12
APCNet [24]	ResNet-101	8×	M,R	10	29	45.38	29	54.7	10
CFNet [77]	ResNet-101	8×	R	79.6	29	44.89	29	54.0	12
BFP [12]	ResNet-101	8×	R	81.4	29	-	25	53.6	12
CCNet [27]	ResNet-101	8×	R	81.4	50	45.22	51	-	17
ANNet [84]	ResNet-101	8×	M,R	81.3	5211	45.24	115	52.8	17.11
CR (Seg. transformer)	ResNet-101	8×	R	81.8	82.4	45.28	55.60	54.8	39.5
· ·		0.4	Advanced	baselines					
DenseASPP [68]	DenseNet-161	8×	M	80.6	81	1-0	51	-	T
DANet [18]	ResNet-101 + MG	8×	R	81.5	51	45.22	51	52.6	39.7
DGCNet [78]	ResNet-101 + MG	8×	R	82.0	51	(+)	55	53.7	-
EMANet [36]	ResNet-101 + MG	8×	R	-	23	(4)	23	53.1	39.9
SeENet [51]	ResNet-101 $+$ ASPP	8×	M	81.2	-23	(40)	83	-	-
SGR [40]	ResNet- $101 + ASPP$	8×	R	4	42	44.32	40	52.5	39.1
OCNet [72]	ResNet-101 $+$ ASPP	8×	M,R	81.7	<u>=</u>	45.45	54.72		-
ACFNet [75]	ResNet-101 $+$ ASPP	8×	M,R	81.8	29	12.5	29	2	12
CNIF [63]	ResNet- $101 + ASPP$	8×	M	-	29	525	56.93		
GALD [37]	ResNet-101 + ASPP	8×	M,R	81.8	82.9	825	23	9	12
GALD [†] [37] I	ResNet-101 + CGNL + MG	8×	M,R	12	83.3	200	29	2	12
Mapillary [52]	WideResNet-38 + ASPP	8×	M	10	82.0	825	29	2	12
GSCNN [†] [55]	WideResNet-38 + ASPP	8×	M	82.8	50		53		
SPGNet [10]	$2 \times \text{ResNet-50}$	$4\times$	950	81.1	50	874	- 53	-	
ZigZagNet [42]	ResNet-101	$4\times$	M		50	172	51	52.1	-
SVCNet [13]	ResNet-101	$4\times$	R	81.0	51		51	53.2	39.6
ACNet [19]	ResNet-101 + MG	$4\times$	M,R	82.3	- ES	45.90	55	54.1	40.1
CE2P [45]	ResNet-101 + PPM	$4\times$	M	- 65	-51	107.31	53.10	- 5	
VPLR ^{†‡} [83]	WideResNet-38 + ASPP	$4\times$	M	-	83.5	(2.2)	50	-	
DeepLabv3+ [7]	Xception-71	$4\times$	M	-	82.1	800	51	-	
DPC [4]	Xception-71	$4\times$	M	82.7	- 1	(*)	81	-	
DUpsampling [57]	Xception-71	$4\times$	M	-	-21	(4)	- 5	52.5	-
HRNet [54]	HRNetV2-W48	$4\times$	10-0	81.6	- 41	840	55.90	54.0	
CR (Seg. transformer)	HRNetV2-W48	$4\times$	R	82.4	83.0	45.66	56.65	56.2	40.5
TD1 (0 +	11D No. 4 VO W 40	180	D	00.0	0.10	100		100	548