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Motivation:

We observe that the instability of transformer training on vision tasks can be attributed to
a over-smoothing problem, that the self-attention layers tend to map the different patches
from the input image into a similar latent representation, hence yielding the loss of information
and degeneration of performance, especially when the number of layers is large.
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= |n this work, we first design extensive experiments to examine the phenomenon of over-smoothing in vision
transformers across various architecture settings.

= We then investigate three different strategies to alleviate the over-smoothing problem in vision transformers.
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Figure 1: An overview of vision transformers by following (Dosovitskiy et al., 2020). Each image patch is

first transformed to a latent representation using a convolutional patch embedding layer. The dog image is
from ImageNet (Deng et al., 2009).




Examining Over-smoothness in Vision Transformers

= Layer-wise cosine similarity between patch representations
h = (B by, hy) (b € RY,

1 h!h; q"' =welq
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where || - || denotes the Euclidean norm. M
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Multi-head Attention Self-attention is an attention mechanism relating different positions of a single E{} k! I
sequence in order to compute a representation of the sequence, and is used as a module in the multi-head } L } 1
attention layers. Given an input representation matrix 7", the multi-head self-attention first applies three gt =Wial j
. . . . e (2 heads as example) a .
different linear transformations on 7" and output K, ), V. Then the multi-head attention is performed as
follows,

metric to measure the diversification of its attention patterns. Specifically, given a patch representation f;
MutliHead (K, Q, V) = Concat (hea di-e- Tea dM) WP where in h and its Softmax attention score as S(h;) (see Eqn.(2)), with S(h;) € R™ and n the number of patches.
Y T ’ We use the standard deviation of the Softmax attention score std(.S(h;)) to quantify the smoothness. For
head; = Attention(K;, Q;, V;). multi-head attention, we simply average the standard deviations over all different heads and patches. Small
O, KT standard deviation values imply that each patch would attend all other patches with similar weights hence in
\/OTI: )Vi turn leading to similar patch representations.

where K = [K1,--- ,Km],Q = [Vi,--- , VM|,V = [V1,- -+, V] is split into M fragments evenly along
the feature dimension, W7 denotes a linear projection layer and dj, denotes the feature dimension of K.

Attention(K;, Q;, Vi) = Softmax(
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Figure 2: An illustration of the over-smoothing phenomenon in vision transformers. We use a 24-layer
DEIT-Base model as our testbed. ‘Ours’ and ‘DEIT random init” denotes the metrics of the model trained
by our proposed loss and a random initialized DEIT model, respectively. All metrics are computed on a
sub-sampled ImageNet training set, which contains 10,000 images.




Suppressing Over-smoothing in Vision Transformers
Pairwise Patch Cosine Similarity Regularization

- __ (pcls 1 h; hj
final-layer patch representation h = (h*, hy,--- , hy), we add a new loss £, = D) D it T T

Patch Contrastive Loss (e is its patch representations at a early layer and h is its patch
representations at a deep layer)

CLS Token
Z BXP(B h ) Patch embedding layer W —>Loss
= —— 10 ) . f .
“ons 3
‘ exp(e] hi) +exp(e; (37 hi/n)) —> > Yir>m
O % o
In this work, we fix e and h to be the first layer features and last layer features, respectively. In practice, we A : Multihead Positive
stop the gradient on e. EFaEN : attention Pair
L AL |
N . Eig&ﬁ Negative
Patch Mixing Loss (cutmix) Pair
This patch mixing loss could be formulated as follows, (a) Patch Constrastive Loss
CLS Token
=-Nv,
bioken Z e(g(h Patch embedding layer . i Bl —> Loss
. . . o ¥ B > Dog
where h; represents patch emebddings in the last layer, ¢ denotes the additional linear classification head, ¥; —_— > \‘r ‘ >l = Dog
is the class label and /., denotes the cross entropy loss. i B = Dog
Multihead .
attention ;
B = Bird

(b) Patch Mixing Loss



EXPERIMENTAL RESULTS

Cosine Reg Patch Constrastive  Patch Mixing | Top-1 Acc (%)
X X X 81.8
v X X 82.0
X X v 824
X v X 82.3
v X v 82.3
v v X 82.3
X v v 82.6

Table 1: Improved ImageNet accuracy using our anti-oversmootheness regularization strategies.

Ec&- + Ecurmix + ’gmns-




EXPERIMENTAL RESULTS

Method Model Size|+ Teacher Models|+ Conv Layers|Top-1 Acc (%)
DEIT-S12 (Touvron et al., 2020) 22M X X 79.9
DEIT-512 + Ours 22M X X 81.2
DEIT-524 44M X X 79.6
DEIT-§24 + Ours 44M X X 82.2
DIET-B12 86M X X 81.8
DEIT-B12 + Ours 86M X X 82.9
DEIT-B24 172M X X 81.4
DEIT-B24 + Qurs 172M X X 83.3
DIET-B121384 86M X X 83.1
DEIT-B12 + Qurs 1384 §6M X X 54.2
DEIT-B24 + Qurs 1512 172M X X 85.0
CaiT-S36 (Touvron et al., 2021) 68M X X 83.3
CaiT-M36 27IM X X 85.1
CaiT-M4871448 356M v X 86.5
SWIN-Base (Liu et al., 2021) 88M X X 83.3
SWIN-Base1384 88M X X 84.2
CVT-21 (Wu et al., 2021) 32M X v 82.5
CvT-211384 32M X v 83.3
LV-ViT-M (Jiang et al., 2021) 50M v v 84.0
[LV-VIT-L.1448 150M v v 86.2

Table 2: Compared to other recent methods for training transformers. Top-1 accuracy on ImageNet validation

set is reported.




EXPERIMENTAL RESULTS

Talking-Heads Attention

S | D | PatchConstrastive PatchMixing | Talking-Head | Epoch | Top-1 Acc (%)
224 | 12 X X X 300 81.8
384 | 12 X X X 300 83.1
224 | 12 X v X 300 82.4
224 | 12 v X X 300 82.3
224 | 12 v v X 300 82.6
224 | 12 v v v 300 82.7
224 | 12 v v v 400 82.9
224 | 24 v v v 400 83.3
384 | 12 v v v - 84.2
512 | 12 v v v - 84.5
512 | 24 v v v - 85.0

Table 3: Ablation study on DEIT-Base on ImageNet validation set. ‘S’ and ‘D’ denotes image size and depth,

respectively.

Table 4: Compared to DEIT training strategies (Touvron et al., 2020), our proposed losses make the training

Model DEIT Ours
Standard 81.7 82.9
- Repeat Augmentation 76.5 82.9
- Random Erasing 5.6 82.9
- Mixup 80.0 82.9
- Drop Path 34 804
+ Depth (24 Layer) 77.3 83.3

of transformers more robust. The results on the DEIT-Base model is reported.
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EXPERIMENTAL RESULTS

PatchConstrastive PatchMixing | Drop Path Rate | Top-1 Acc (%)
X v 0.10 81.8
X v 0.50 82.7
X v 0.75 82.5
v v 0.10 82.0
v v 0.50 83.0
v v 0.75 83.3

Table 5: Ablation study on 24-layer DEIT-Base on ImageNet validation set. We demonstrate that by using the
token constrastive loss, we are able to use stronger drop path and achieve better generalization. The image
size 1s set to 224 x 224, while talking head attention is used. In our experiments, following (Touvron et al.,

2020), we linearly increase the drop path rate by layer.

Model Image Size | Top-1 Acc (%)
VIT-Large (Dosovitskiy et al., 2020) 384 85.1
VIT-Large + Ours 224 83.9
VIT-Large + Ours 384 85.3

Table 6: We download Dosovitskiy et al. (2020)’s checkpoint and finetune it with 40 epochs on ImageNet.




Thank you




