PointRend: Image Segmentation
as Rendering

Speaker: Gong, Qiqi

Overview

- View image segmentation as a rendering(;&&) problem

« Propose a module: PointRend, applied to instance & semantic segmentation
* Instance segmentation: Mask R-CNN + PointRend
« Semantic segmentation: DeepLabv3 + PointRend

« Benchmarks: COCO & Cityscapes

Rendering

- Rendering (JEZY): A concept in computer graphics
* Displaying a model (3D) on an 2D image
 An analogy

« Rendering: render 3D model on a regular grid

« Segmentation: “render” segmentation output from an underlying continuous

entity

« Core: boundary parts

Method

* Overview
 Errors occur mostly on boundary parts
« Choose N hard points in output mask to re-predict
« Three components:
« Point selection strategy: avoid excessive computation
« Point-wise feature representation: for each selected point

 Point head: predict a label from point-wise feature representation

4x4
M et h O d point
prediction

« Point selection strategy

 Selected points should be located more densely near areas like boundaries

* Inference Stage:
« 1. Upsample predicted segmentation
« 2. Choose N most unceratin points (p closest to 0.5 for binary mask)
« 3. Computes their point-wise feature representation and predict labels
« Repeat 1-3 until a desired resolution
« Complexity:

 Desired resolution : M*M; Starting resolution: MO*MO

. M
« Complexity: Nlogzﬁ

0

k=18=100 k=3,8=075 k=10,A=10.75

Method

« Point selection strategy

- . e LA Y T
a) regular grid b} uniform c) mildly biased d) heavily biased

« Selected points should be located more densely near areas like boundaries
* Training Stage:
« Non-iterative stategy based on random sampling

« 1.0ver generation: Randomly sampling kN points (k>1) from a uniform
distribution;

« 2. Importance sampling: Select most uncertain BN (B€[0,1]) points from
kN points;

« 3. Coverage: remaining (1-B)N points are sampled uniformly
« Number of selected can be difference between training and inference

 Predictions and loss functions are only computed on the N sampled points

Method

- Point-wise Representation
« Combining fine-grained and coarse prediction features
 Fine-grained Features:
« Extract a feature vector at each sampled point from CNN feature maps
« Can be extracted from one or more feature maps
* Deficiencies:
Do not contain region-specific information
« May only contain relatively low-level information

e Coarse Features:

Method

« Point-wise Representation
« Coarse Features:
« A K-dimensional vector at each point (a K-class prediction)
 Point Head

coarse prediction

 Using a simple MLP 7 1 ¥

A Il

Ve ﬁnfq;—graincd point features point predictions
—! atures

Experiments: Instance Segmentation

 Architecture

« Mask R-CNN

e ResNet-50 + FPN

« Mask head adjustment

* Training: 142 points, k=3, =0.75

 Inference;: N=282

112x112

output COCO Cityscapes
mask head | resolution AP AP* AP
4 conv 28x28 352 376 33.0

PointRend 28 %28 36.1 (+09 392 (116 | 35.5+25)
PointRend | 224x224 | 36.3(+1.1) 39.7 (+2.1) | 35.8 (+28)

Table 1: PointRend vs. the default 4 < conv mask head for Mask
R-CNN [19]. Mask AP is reported. AP* is COCO mask AP eval-
uated against the higher-quality LVIS annotations [16] (see text
for details). A ResNet-50-FPN backbone is used for both COCO
and Cityscapes models. PointRend outperforms the standard 4 x
conv mask head both quantitively and qualitatively. Higher output
resolution leads to more detailed predictions, see Fig. 2 and Fig. 6.

224 %224

Figure 6: PointRend inference with different output resolu-
tions. High resolution masks align better with object boundaries.

Experiments: Instance Segmentation

 Ablation Experiments

CcOCO Cityscapes

selection strategy AP AP AP
regular grid 2.7 391 34.4
uniform (k=1, 3=0.0) 359 390 34.5

mildly biased (k=3, 3=0.75) | 36.3 39.7 358
heavily biased (k=10, 3=1.0) | 344 375 34.1

Table 4: Training-time point selection strategies with 14” points
per box. Mildly biasing sampling towards uncertain regions per-
forms the best. Heavily biased sampling performs even worse than
uniform or regular grid sampling indicating the importance of cov-
erage. AP” is COCO mask AP evaluated against the higher-quality
LVIS annotations [16] (see text for details).

CcOoCcoO

mask head | backbone AP AP

4 % conv R50-FPN | 37.2 39.5
PointRend | R50-FPN | 38.2 (+1.0) 41.5 +2.0)
4 % conv R101-FPN | 38.6 41.4
PointRend | RI0OI-FPN | 39.8 (+1.2) 43.5 2.1)
4 x conv X101-FPN | 39.5 42.1
PointRend | X101-FPN | 40.9 (+1.4) 44.9 (+2.8)

Table 5: Larger models and a longer 3x schedule [18].
PointRend benefits from more advanced models and the longer
training. The gap between PointRend and the default mask head
in Mask R-CNN holds. AP™ is COCO mask AP evaluated against
the higher-quality LVIS annotations [16] (see text for details).

Experiments: Semantic Segmentation

* Architecture
« SemanticFPN: ResNet-101
« DeeplLabv3: ResNet-103
* Inference: N=8096

method | output resolution | mloU
DeeplabV3-0S-16 64 x 128 711.2
DeeplabV3-0S-8 128 x256 77.8 (+0.6)

DeeplabV3-0S-16 + PointRend 1024 %2048 78.4 (+12)

Table 6: DeeplabV3 with PointRend for Cityscapes semantic
segmentation outperforms baseline DeepLabV3. Dilating the resy
stage during inference yields a larger, more accurate prediction,
but at much higher computational and memory costs; it is still in-
ferior to using PointRend.

method output resolution | mloU
SemanticFPN P3z-P5 256x512 TL7
SemanticFPN Ps-P: + PointRend 1024 x 2048 78.6 (+0.9)
SemanticFPN P5-P5 128 x256 77.4
SemanticFPN P3-P5 + PointRend 1024 %2048 78.5 (+1.1)

Table 7: SemanticFPN with PointRend for Cityscapes semantic
segmentation outperform the baseline SemanticFPN.

Experiments: Semantic Segmentation

Mask R-CNN + 4x conv Mask R-CNN + PointRend

1“ =" n -

Deep]ab\f?i

Figure 8: Cityscapes example results for instance and semantic segmentation. In instance segmentation larger objects benefit more
from PointRend ability to yield high resolution output. Whereas for semantic segmentation PointRend recovers small objects and details.

