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Self-supervised pretraining

* Segmentation supervised
* Image -> Logits mask prediction -> CELoss <- GT mask (Human annotate)
* Image (-> Semantic information) -> Logits mask prediction

* Segmentation self-supervised
* Image (-> Semantic info) -> Pretext pred -> Loss <- Pretext GT (Generated)
* Image (-> Semantic info) -> Logits mask prediction -> CELoss <- GT mask




Self-Supervised Pretext
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MoCo - Dictionary Look-up

* Keys in the dictionaries
* Sample from data, images or patches
* Represented by encoder network

* Encoded ‘query’
e Similar to its matching ‘key’
 Dissimilar to others
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MoCo

* Two encoder
* Same arch
 Different param
* One update by SGD

* Another update in momentum way
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Figure 1: Self-attention from a Vision Transformer with 8 x 8 patches trained with no supervision. We look at the self-attention of
the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model
automatically learns class-specific features leading to unsupervised object segmentations.

* Dino, self-distillation with no label
* Self-Supervise, knowledge distillation, transformer



Motivation

* Success of Transformers 1n NLP : use of self-supervised pretraining

* Self-supervised training
» Use the words in a sentence to create pretext tasks
* Provide richer learning signal

* Normal (supervised) training
* Predicting single label per sentence

* Image level supervision
* Single concept from a predefined set of a few thousand categories of objects



Motivation

* Self-supervised ViT feature

* Contain scene layout and object boundaries
* Performs well with k-NN method, without finetuning or linear classifier




Approach
* Case of pair of views (x1, x2) 'Pﬁisg: ke
sg

* x1, x2, same 1image different transforms

* Networks, same arch different params softmax Softfnax
* Output K-dim vector Centfn'ng
* T: centering & sharpening, as GT T ema [ o0

* Param update

* S: Backprop ° @

* T: Stop gradient & exponential moving average °



Input Multi-view

 V, set of different views

* Two global views, X gl X g2
* Several (8) local views, X 11

 Network

* S: all views
* T: global views
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Centering and Sharpening (o)

* Centering teacher network, gt(x)
gt(:c_) — gt(:c) + c.

c(—mc—l— det :1;z

* Sharpening in softmax

P.(2)® = exp(go, (z) /7s) |
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softmax
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a=[3, 2, 1]

softmax(a)

array([0.66524096, 0.24472847, ©0.09003057])

softmax([i * 10 for i in al)
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array([9.99954600e-01, 4.53978686e-05, 2.06106005e-091])




Centering and Sharpening

* Avoid collapse
mmm= sharpening == = centering messs both

* Centering
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Figure 7: Collapse study. (left): evolution of the teacher’s target
entropy along training epochs; (right): evolution of KL divergence
between teacher and student outputs.



Param Update

* Student
* Adamw, backprop
* Teacher
B, < A0y + (1 — A)b,
* A 0996 ->1
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Figure 6: Top-1 accuracy on ImageNet validation with k-NN classi-
fier. (left) Comparison between the performance of the momentum
teacher and the student during training. (right) Comparison be-
tween different types of teacher network. The momentum encoder
leads to the best performance but is not the only viable option.



Algorithm 1 DINO PyTorch pseudocode w/o multi-crop.

# gs, gt: student and teacher networks

# C: center (K)

# tps, tpt: student and teacher temperatures

# 1, m: network and center momentum rates

gt .params = gs.params

for x in loader: # load a minibatch x with n samples
x1, x2 = augment (x), augment (x) # random views

sl, s2
tl, t2

gs(x1l), gs(x2) # student output n-by-K
gt (x1), gt(x2) # teacher output n-by-K

loss = H(tl, s2)/2 + H(t2, sl)/2
loss.backward () # back-propagate

# student, teacher and center updates
update (gs) # SGD

gt.params = lxgt.params + (l-1) xgs.params
C = mxC + (1-m)xcat([tl, t2]) .mean (dim=0)

def H(t, s):
t = t.detach() # stop gradient
s = softmax(s / tps, dim=1l)
t = softmax((t - C) / tpt, dim=1) # center + sharpen
return - (t * log(s)) .sum(dim=1) .mean ()




Training Detall

e 1024 batch size
16 GPUs, v100
* 100 epoch

Implementation details. We pretrain the models on the
ImageNet dataset [60] without labels. We train with the
adamw optimizer [44] and a batch size of 1024, distributed
over 16 GPUs when using ViT-S/16. The learning rate is
linearly ramped up during the first 10 epochs to its base
value determined with the following linear scaling rule [29]:
Ir = 0.0005 * batchsize /256. After this warmup, we decay
the learning rate with a cosine schedule [43]. The weight
decay also follows a cosine schedule from 0.04 to 0.4. The
temperature 7, 1s set to 0.1 while we use a linear warm-up
for 7, from 0.04 to 0.07 during the first 30 epochs. We
follow the data augmentations of BYOL [30] (color jittering,
Gaussian blur and solarization) and multi-crop [10] with a
bicubic interpolation to adapt the position embeddings to
the scales [19, 69]. The code and models to reproduce our
results is publicly available.



Table 8: Time and memory requirements. We show total running
time and peak memory per GPU (“mem.”) when running ViT-S/16
DINO models on two 8-GPU machines. We report top-1 ImageNet
val acc with linear evaluation for several variants of multi-crop,
each having a different level of compute requirement.

100 epochs 300 epochs
multi-crop top-1 time top-1 time mem.
2 x 2242 67.8 15.3h 725 459h 9.3G
2x224% + 2x96% 715 17.0h 745 51.0h 10.5G
2x224% + 6x96% 73.8 20.3h 759 60.9hn 12.9G
2x224% +10%x96% 74.6 242h 76.1 72.6h 154G




Linear and k-NN classification on ImageNet

Method Arch. Param. im/s Linear k-NN

Supervised RNS50 23 1237 79.3 79.3

SCLR [17] RN50 23 1237 69.1  60.7 Comparison across architectures

MoCov2 [15] RNS50 23 1237 71.1 61.9 SCLR [12] RN50w4 375 117 76.8 69.3
InfoMin [67] RNS5O0 23 1237 73.0 653 SwAV [10] RN50w?2 93 384 773 67.3
BarlowT [ ] RN50 23 1237 73.2 66.0 BYOL [ ] RN50w?2 093 384 77 .4 _
OBoW [27] ~ RN50 23 1237 738 619 pNo ViT-B/16 85 312 782 761
BYOL [30] ~ RN50 23 1237 744 648 guAv[10]  RNS50wS 58 76 785 67.1
DCv2 [10] RN50 23 1237 752 67.1 BYOL [30] RN50w4 375 117 78.6 _
SWAV [10] __RN50 23 1237 753 65.7  ByQr[30] = RN200w2 250 123 796 739
Ly L 2o leod e Ui BN ViT-S/8 21 180 797 783
Supervised ViT-S 21 1007 79.8 79.8 SCLRv2 [13] RNI152w3+SK 794 46 79.8 73.1
BYOL* [30]  ViT-S 21 1007 714 66.6 DINO ViT-B/8 85 63 80.1 774
MoCov2* [15] VIiT-S 21 1007  72.7 64.4

SwAV™ [10] ViT-S 21 1007 73.5 66.3

DINO VIT-S 21 1007 77.0 745




Other task

Table 3: Image retrieval. We compare the performance in retrieval
of off-the-shelf features pretrained with supervision or with DINO
on ImageNet and Google Landmarks v2 (GLDv2) dataset. We
report mAP on revisited Oxford and Paris. Pretraining with DINO
on a landmark dataset performs particularly well. For reference, we
also report the best retrieval method with off-the-shelf features [57].

ROx R Par
Pretrain  Arch. Pretrain M H M H
Sup. [57] RN101+4R-MAC ImNet 49.8 18.5 74.0 52.1
Sup. ViT-S/16 ImNet 335 89 63.0 37.2
DINO ResNet-50 ImNet 354 11.1 559 27.5
DINO ViT-S/16 ImNet 41.8 13.7 63.1 344

DINO ViT-S/16 GLDv2 515 243 753 51.6

Table 4: Copy detection. We report the mAP performance in copy
detection on Copydays “strong” subset [21]. For reference, we
also report the performance of the multigrain model [5], trained
specifically for particular object retrieval.

Method Arch. Dim. Resolution mAP
Multigrain [5]  ResNet-50 2048 2242 75.1
Multigrain [5] ResNet-50 2048 largest side 800  82.5
Supervised [69] ViT-B/16 1536 2242 76.4
DINO ViT-B/16 1536 9242 81.7
DINO ViT-B/8 1536 3202 85.5




Other task

Table 5: DAVIS 2017 Video object segmentation. We evaluate
the quality of frozen features on video instance tracking. We report
mean region similarity .7, and mean contour-based accuracy J,.
We compare with existing self-supervised methods and a supervised
ViT-S/8 trained on ImageNet. Image resolution is 480p.

Method Data Arch. (J&F)m T Fm
Supervised

ImageNet INet VIiT-S/8 66.0 639 68.1
STM [4€] I/D/Y RN50 81.8 79.2 843
Self-supervised

CT [71] VLOG RN50 48.7 46.4 50.0
MAST [40] YT-VOS RNI18 65.5 633 67.6
STC [37] Kinetics RN18 67.6 64.8 70.2
DINO INet ViT-S/16 61.8 60.2 634
DINO INet ViT-B/16 62.3 60.7 63.9
DINO INet ViT-S/8 69.9 66.6 73.1
DINO INet ViT-B/8 71.4 679 749




Segmentation supervised vs DINO

Supervised

Figure 4: Segmentations from supervised versus DINO. We vi-
sualize masks obtained by thresholding the self-attention maps to
keep 60% of the mass. On top, we show the resulting masks for
a ViT-S/8 trained with supervision and DINO. We show the best
head for both models. The table at the bottom compares the Jac-
card similarity between the ground truth and these masks on the
validation images of PASCAL VOCI12 dataset.

Random Supervised DINO

ViT-S/16 22.0 273 45.9
ViT-S/8 21.8 23.7 44.7




Ablation

Method Mom. SK MC Loss Pred. k-NN Lin.

DINO v X Vv CE X 72.8 76.1
X X Vv CE X 0.1 0.1
v v Y CE X 122 76.0
v X X CE X 67.9 125
v X Vv MSE X 52.6 62.4
v X Vv CE v 71.8 75.6
BYOL v X X MSE v 66.6 71.4
MoCov2 V X X INCE X 62.0 71.6
SwAV X v v CE X 64.7 71.8

SK: Sinkhorn-Knopp, MC: Multi-Crop, Pred.: Predictor
CE: Cross-Entropy, MSE: Mean Square Error, INCE: InfoNCE



