Instance Segmentation

i DES



Papers

* Mask R-CNN
* PointRend: Image Segmentation as Rendering
* YOLACT: Real-time Instance Segmentation

* PolarMask: single shot instance segmentation with polar
representation

* SOLO: segmenting objects by locations



Mask R-CNN

* Based on faster rcnn
* Qutput a binary mask for each Rol

1l RolAlign

Figure 1. The Mask R-CNN framework for instance segmentation.



Mask R-CNN  RolAlign

* RolPool first quantizes a floating-number Rol to the discrete

granularity of the feature map

* Then subdivided into spatial bins which are themselves quantized

e Cause misalignments

______________________

_____________________________

______________________________



Mask R-CNN LOSS

* Define a multi-task loss on each sampled Rol

L‘ — LCES —|_ L'b-f_‘_lj: —|_ L']'HI!'IS.IE{.'

* Mask branch has a K x m x m output for each Rol
* m*m resolution, k classes
* per-pixel sigmoid
e average binary cross-entropy loss
* for Rol with ground-truth class k, Lmask is only defined on the k-th mask



PointRend: Image Segmentation as Rendering
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PointRend Point Selection

* Inference: adaptive subdivision (in rendering

* Train: to select N points
* Over generation: select kN points randomly

* Importance sampling: select most uncertain BN points (B € [0, 1])
e Coverage: (1 - B)N points sampled from a uniform distribution

E=1,8=0.0 E=3.8=0.75 E=10,83=0.75

We use the distance between 0.5 and the
probability of the ground truth class interpolated
from the coarse prediction as the point-wise
uncertainty measure.

a) regular grid b).uniform c) mildlj..r biased d) hr::;vily biased



PointRend Point-wise Representation

* Fine-grained features: CNN feature maps
* fine segmentation details
* bilinear interpolation
* single or multiple feature map (res2 or res2 tores5 in a ResNet

coarse prediction

e Coarse prediction features
* region-specific information
e contextual and semantic information

v fine-grained point features point predictions
= features



PointRend

 Point head: MLP

* shares weights across all points
* binary cross-entropy

* Train:
e sample 14”2 points (ROI_MASK_HEAD.POOLER_RESOLUTION)
* One time (does not improve the baseline Mask R-CNN
* Bilinear GT

* Inference
e Top-k
e Cascade



YOLACT

Assembly
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YOLACT Prototype Generation (protonet

* FCN structure,

* k channel out (k prototypes (- ];
 No extra loss ?

e Attached to p3 in FPN .

Prototypes

» deeper backbone features, more robust
* higher resolution prototypes, higher quality masks

4 138x138
xk




YOLACT Mask Coefficients

* Three branch
* c class confidences
* 4 bounding box regressors
* k mask coefficients (k prototypes Class

Class

* Nonlinearity
* tanh to the k mask coefficients

Mask | Xka

RetinaNet [ 7] Ours



YOLACT Mask Assembly

 Linear combination (matrix multiplication and sigmoid

Mask Coeffucuents

-------------------------
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* P, prototype masks, h x w x k

* C, mask coefficients, n x k
* ninstances, surviving NMS and score thresholding

* Cropping Masks | o }” Thregh“'d}

* Evaluation, predicted bounding box
* Training, ground truth bounding box




YOLACT Prototype Behavior

Figure 5: Prototype Behavior The activations of the same
six prototypes (y axis) across different images (x axis). Pro-
totypes 1-3 respond to objects to one side of a soft, implicit
boundary (marked with a dotted line). Prototype 4 activates
on the bottom-left of objects (for instance, the bottom left of
the umbrellas in image d); prototype 5 activates on the back-
ground and on the edges between objects; and prototype 6
segments what the network perceives to be the ground in the
image. These last 3 patterns are most clear in images d-f.




PolarMask : Single Shot Instance
Segmentation with Polar Representation
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Figure 2 — The overall pipeline of PolarMask. The left part contains the backbone and feature pyramid to extract features of different levels. The middle
part is the two heads for classification and polar mask regression. H, W, C are the height, width, channels of feature maps, respectively, and k is the

number of categories (e.g., k = 80 on the COCO dataset), n is the number of rays (e.g., n = 36)



FCOS
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PolarMask

(a) Original image
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(c) Cartesian Representation

(b) Pixel-wise Representation
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(d) Polar Representation
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PolarMask

* Polar Representation
* pre-define angle interval, predict length of the ray

e Center Samples
* (x,y), falls into areas around the mass-center, about 9~16 pixels
* Avoid imbalance ..., Mass-center may not be the best center

* Distance Regression
* multiple intersection, one with the maximum length
* does not have intersection, set to 1e-6

* Mask Assembling
* Top-k, threshold, NMS
* Calculate point position, connect them one by one

P PPN



PolarMask Center-ness

* Poor performance,
* low-quality bounding boxes, far away from the center of an object

e Center-ness branch
* Single-layer branch

. min({*,r*)  min(¢*, b*)
centerness” = X .
max(l*,r*)  max(t*,b*)

* Range from 0 to 1, use BCE loss

* Polar Center-ness

min({dy,d,...,dx})
max({dy,dy,...,dy})

Polar Centerness = \/



PolarMask

* Converts segmentation into regression

e Polar loU

Polar ToU =

e Polar IOU Loss

Polar loU Loss

@ Ground Truth D= {d,,d;, ...d,}
W Prediction D = {d,,d;,...d}

T
D i—1 dmax

Polar IoU Loss = log zn_l
Eg 1 mm

| 1
/ [y 5 min(d;, d;)? d6
loU =

/ JZ" Fmax(d;, &)? 6

Figure 5 — Mask IoU in Polar Representation. Mask IoU (interac-
tion area over union area) in the polar coordinate can be calculated by
integrating the differential IoU area in terms of differential angles.



SOLO: Segmenting Objects by Locations

* Divides input image into a uniform grids (SxS
* predicting the semantic category
* segmenting that object instance

Category Branch

Mask Branch




SOLO

* Semantic Category
e Output SxSxC, Cclasses

[

Category Branch

A Semantic categon
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Instance
segmentation

Input image Mask Branch

Instance mask




SOLO

Instance Mask

* One-to-one correspondence
e Channel k, grid (i, j), where k=i -S+j

 Spatially variant, position sensitive

 CoordConv

CoordConv Layer

Category Branch

Mask Branch

]

C




