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Deep Image Matting

I, = o; F; + (l — ﬂf-i)Bfi' ;€ [0 l]

* Current methods are designed to solve the matting equation

* Very small dataset
e 27 training Images and 8 test images



New matting dataset

* 1) Find images on simple or plain backgrounds, create alpha matte

* 2) Randomly sample N background images in MS COCO and Pascal
VOC
* Training set,
* 493 unique foreground objects and 49,300 images
* Testing set,
* 50 unigue objects and 1000 images
* Trimap
* randomly dilated



Matting encoder-decoder stage

VGG-16
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Figure 3. Our network consists of two stages, an encoder-decoder stage (Sec. 4.1) and a refinement stage (Sec. 4.2)



encoder-decoder stage

4

\J/

T

Raw Alpha Pred
Decomv2 (1x5x5) GT Alpha Matte
(64x5x5)

Deconvd
(256x5x5)

Decorwé
(512x1x1) 4

Alpha Prediction Loss

Deconvs
{512x5x5)

Deconv3
(128x5x5)
Deconvl

(64x5x5)

J 3
/ ? v
' J
Loss ‘
e

Matting Encoder-Decoder Stage

Alpha Prediction Loss

V(ah —aj

2+

Compositional Loss

et — ot

P

g

)2 + €2.

(8%

i
pﬂ

a; € [0,1].

Cp=FG*a+BG~*(1-a)



Matting refinement stage
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Figure 4. The effect of our matting refinement network. (a) The in-
put images. (b) The results of our matting encoder-decoder stage.
(¢) The results of our matting refinement stage.
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Experimental results

Table 1. The quantitative results on the Composition-1k testing
dataset. The variants of our approaches are emphasized in italic.

The best results are emphasized in bold.

Methods SAD MSE Gradient Connectivity
Shared Matting [ 3] 1289 0.091 126.5 1353
Learning Based Matting [ 4] 1139 0.048 91.6 1222
Comprehensive Sampling [25] 143.8 0.071 102.2 142.7
Global Matting [ 16] 133.6 0.068 97.6 133.3
Closed-Form Matting [ 2] 168.1 0.091 126.9 167.9
KNN Matting [5] 1754 0.103 124.1 176.4
DCNN Matting [#] 161.4 0.087 115.1 161.9
Encoder-Decoder network 54 & 319 4035 593
(single alpha prediction loss)

Encoder-Decoder network 546 0.017 36.7 55.3
Encoder-Decoder network

+ Guided filter[ 7] 522 0.016 30.0 52.6
Encoder-Decoder network 504 0.014 310 50.8

+ Refinement network

SAD(Sum of Absolute Differences)
MSE(Mean Squared Error)
Gradient

Z (Va’.i — Va’:)q

Connectivity

Figure 4. Connectivity error. See explanation in the text.
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Motivation

* Affinity-based and sampling-based algorithms
* Need both FG and BG information to estimate the alpha matte
* Only background and unknown areas In the trimap

* Learning-based image matting methods
* SampleNet, deep inpainting methods, combination

* Propose a novel Image matting method
* based on the opacity propagation in a neural network

* We devise a guided contextual attention module, mimic the affinity-
based propagation



Baseline Structure
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Guided Contextual Attention Module

Two different feature flows

* High-level Alpha features
* Low-level image features

e b5 JR




Low-level Image Feature

Reshaps
as Kernel

* Known part and unknown part .
* Extract 3 x 3 patches (as conv kernels ——
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High-level Alpha features

* Extract 3 x 3 patches B Known Area

I Unknown Area Reshape

as Kernel

* Reconstruct alpha features

Conv. &
Sealed-Softmax

* Element-wise summation, residual connection

Visualization
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Result

Methods

MSE SAD Grad Conn
Learning Based Matting  0.048 1139 916 1222
Closed-Form Matting 0.091 168.1 1269 167.9
KNN Matting 0.103 1754 124.1 1764
Deep Matting 0.014 50.4 31.0 50.8
IndexNet Matting 0.013 45.8 25.9 43.7
SampleNet Matting 0.0099  40.35 - -
Baseline 0.0106 40.62 21.53 3843
Ours 0.0091 3528 16.92 3253




Context-Aware Image Matting for
Simultaneous Foreground and Alpha Estimation
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Motivation

* Simultaneously estimate the alpha map and the foreground image

* Attribute
* |ocal visual features and global context information
* combination of the Laplacian and feature loss
* various effective data augmentation strategies



Context-Aware Image Matting

Xception 65 architecture 16x

e e o A T e —-—”

__r : context encoder : matting encoder @ : alpha decoder : foreground decoder -~ : skip connection

Figure 2. The architecture of our matting network. We design a two-encoder-two-decoder network. The matting encoder and the context
encoder capture both visual features and more global context information. The features from these two encoders are concatenated and feed
to the foreground and the alpha decoder to output the foreground image and the alpha map of the input image simultaneously.



Context-Aware Image Matting

5
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Gaussian Laplacian
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Context-Aware Image Matting

5
Laplacian loss Liap = Z 27 L (&) — L' (a)l|1,
Feature loss LE = Z | Prayer (0 * F)— Prayer (@ * F) [ b L8
layer
)C?‘ Z ||¢£ayw Q * F ﬁbiayf'r( F)H%,
layer
----p L€

* F°, ground truth foreground

* o\, ground truth Alpha matte
* (_layer, features output by the layer in a pre-trained VGG16 network.

. Our method uses [convl 2, convZ 2, conv3 3, conv4 3]




Context-Aware Image Matting

Laplacian loss

Feature loss

L1 loss
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Data Augmentation

e Subtle artifacts

* misaligned JPEG blocks, compression quantization artifacts, and
resampling artifacts

* Augmentation
* Resizing augmentation
* Use re-JPEGIng and Gaussian blur

Table 4. Comparison of visual quality on the real-world dataset.

Methods Mean score  Std
ME + CE + L4 4.64 0.42
ME + CE+ Liap + L 4.69 0.40

ME + CE + L}, + LF + DA 5.03 0.25




Table 1. Alpha map results on the Composition-1K testing set.

Methods SAD  MSE(10°) Grad Conn
Shared Matting[16] 128.9 91 126.5 135.3
Learning Based Matting [54] 1139 48 91.6 122.2
Comprehensive Sampling [42] 143.8 71 102.2 1427
Global Matting [19] 133.6 68 97.6 133.3
Closed-Form Matting [27] 168.1 91 126.9 167.9
KNN Matting [6] 175.4 103 124.1 176.4
DCNN Matting [8] 161.4 87 115.1 161.9
Three-layer Graph [29] 106.4 66 70.0 -
Deep Matting [52] 50.4 14 31.0 50.8
Information-flow Matting [2] 75.4 66 63.0 -
AlphaGan-Best! [33] 52.4 30 38.0 -
(1) ME + Licepmatting 49.1 13.4 26.7 49 8
(2) ME + Eﬁlp 43.9 11.8 20.6 41.6
(3) ME + CE + ﬁf’;p 35.8 8.2 17.3 33.2
(4) ME + CE + ﬁf‘;p + L% 38.8 0.0 19.0 36.0
¥ [

SAME OB+ Ligp + LB+ 513 23.6 388 720
O ME + CE + L, + LT+ 34 8.8 169 354
L]+ L%

(HME +CE + L} + L% +

E -
e srs DA P 841 201 392
(8) ME + CE + L§, + L +
£§+ LS. +DA-ReJPEGing ! 155 246 547
[a ] ¥
OIME+CE+ Lo, * LT+ 691 235 396 69.1

L] + LS + DA - GaussianBlur
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Motivation

* Recent two methods
* Show improved results by also estimating the foreground colors,
 Significant computational and memory cost

* This paper
* l[ow-cost modification to also predict the foreground and background
colours

* study variations of the training regime, loss functions



Contributions

1. a comparison of min-batch and stochastic gradient descent and
the use of batchnorm vs. groupnorm

2. a study of the different oc-matte losses (L1, gradient, laplacian
pyramid, compositing loss).

3. astudy of the potential benefit of also predicting F and B
alongside o and the possible losses associated with this (L1 loss
and exclusion |oss).



Network Arch

* Encoder-decoder with Unet style architecture
* Main difference, also predicts F and B from single encoder-decoder

* Extending output channels from one to seven (1 for a, 3 for F and 3
for B)



Encoder

ResNet-50
* Increase the number of input channels from 3 to 9

* encode the trimap
* using Gaussian blurs
* of the definite foreground and background masks
* at three different scales

* remove striding, add dilation, [layer 3', ‘layer 4’ |



Batch Normalisation vs. Group Normalisation

* A mini-batch size of one can greatly increase the network
accuracy

* Use Group Normalisation (32 channels per group)



F B, o Losses

Table 1. Training Loss Functions.
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=, B”, o Fusion
* Predictions for o, F~ and B™ are decoupled

* Equation 1 Is not explicitly enforced

* Propose a fusion mechanism based on maximum likelihood estimate



F* B™ o Fusion

* Assuming Gaussian distributions

IC—aF - (1 - a)BIE)

2
p(a|&) x exp (— 502 ) p(a, F,B) o exp ( 202,



F* B™ o Fusion

* Adopt an Iterative block solver approach

ﬁ\(n—l—l) F _I_ a(n) (C a(n,)F(n,) (1 . &(u})ﬁ(n))

B+t _ B o J_B(l _ &™) (C _ampm) _




Test Time Augmentation

* We use a comprehensive test-time augmentation, combining
rotation, flipping and scaling



Batch-Size and BN vs. GN
0ss Function and Activation

Model Norm. Batch-Size Loss MSE SAD GRAD CONN

Training at 20 epochs:
(1) BN 6 LS 11.2 36.3 149 32,5
(2) BN 6  LF+LO 0.1 345 150 31.3
(3) BN 6 LY + L3+ Ly, 74 33.5 12,9 285
(4) BN 6 LY + L+ Ly + Ly 8.1 36.3 13.8 32.0
(5) GN 6 LY + L3+ Ly, + Ly 10.3 36.2 15.1 32.0
(6) GN 1 LS+ L+ L8, + L2 72 328 133 286
(7) GN 1 LT + L3+ Ly, + LG+ clip, 6.9 31.2 129 27.1

Training at 45 epochs:
Ours, GN 1 LY + L + Ly, + L4+ clip,

o
2

26.5 10.6 21.8




Fvaluating the Impact of Jointly Estimating F, B, o

Table 3. Ablation study of foreground results on the Composition-1k dataset. Here

B — pfB 4 Eﬂf + £FP In column two the * indicates that the EfB,ﬁif are

computed over the entire image as opposed to just the unknown region of the trimap.

Model +Lr +Lexcl output aF a
SAD MSE SAD MSE
Closed-form Matting [20] 251.67 2296 161.3 85.3
Context-Aware Matting [13] 70.00 1149 381 8.9
Training at 20 epochs:
(6) N N sigmoid - - 328 7.2
(8) Y N sigmoid 53.64 9.04 327 9.0
(9) Y Y sigmoid b2.87 888 31.8 8.9
(7) N N clip - - 31.2 6.9
(10) Y Y clip 50.69 8.64 31.3 8.6
(11) Y* Y clip 50.29 848 321 8.5
Training at 45 epochs:
(11) Y* Y clip 42.19 6.50 265 54
Oursrps Y©* Y clip +fusion 39.21 6.19 264 5.4
Oursgg, Y* Y clip +fusion +TTA 38.81 598 25.8 5.2




Result

Table 4. Alpha map results on the Composition-1k test set [37].

Method SAD MSE x10° Gradient Connectivity
Closed-Form Matting [20] 168.1 91.0 126.9 167.9
KNN-Matting [4] 175.4 103.0 124.1 176.4
DCNN Matting [5] 161.4 87.0 115.1 161.9
Information-flow Matting [1]  75.4 66.0 63.0 -
Deep Image Matting [37] 50.4 14.0 31.0 50.8
AlphaGan-Best [25] 52.4 30.0 38.0 i
IndexNet Matting [24] 45.8 13.0 25.9 43.7
VDRN Matting [33) 45.3 11.0 30.0 45.6
AdaMatting (3] 41.7 10.2 16.9 -
Learning Based Sampling [34] 40.4 9.9 - -
Context Aware Matting [13]  35.8 8.2 17.3 33.2
GCA Matting [21] 35.3 9.1 16.9 32.5
Ours, 26.5 5.3 10.6 21.8
Oursggpa 26.4 5.4 10.6 21.5
Oursppa TTA 25.8 5.2 10.6 20.8




Background Matting:
The World 1s Your Green Screen
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Motivation

* To extracting (pulling) a good quality matte, require either a
green screen studio, or the manual creation of a trimap

* Paper propose
* Take an additional photo of the (static) background



supervised Training on the Adobe Dataset
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Figure 2: Overview of our approach. Given an input image I and background image B’, we jointly estimate the alpha matte o and
the foreground F' using soft segmentation .S and motion prior M (for video only). We propose a Context Switching Block that efficiently
combines all different cues. We also introduce self-supervised training on unlabelled real data by compositing into novel backgrounds.



supervised Training on the Adobe Dataset

* Input
* An image | with a person in the foreground,
* An Image of the background B
* A soft segmentation of the person S,
* A stack of temporally nearby frames M, (optionally for video)

* Generate S
* Apply person segmentation
* Erode (5 steps), dilate (10 steps)
* Apply a Gaussian blur (o = 5)
* Set M to be the concatenation of the two frames before and after
* converted to grayscale, focus more on motion cues



supervised Training on the Adobe Dataset

* Residual-block-based encoder-

Image |

Image (I)

Encoder

decoder, doesn’'t work
* Reason, domain gap,

Prior

Encoder

* trusting the background B’ too much and
generating holes

Prior

Selector

* Instead, we propose a new Context
Switching block
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supervised Training on the Adobe Dataset

* Separately produce 256 channels of

Image |

Image (I)

Encoder

feature maps
* Combines the image features from |,

Prior

Encoder

producing 64-channel features for each
* Combines 3*64 and 256 channel, 1x1

Prior

Selector
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conv BN and RelU
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supervised Training on the Adobe Dataset
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Adversarial Training on Unlabelled Real data

* Still fails to handle all difficulties present in real data

~ Lo

traces of background around fingers, arms, hairs copied into matte
segmentation failing

foreground color matching the background color

misalignment between the image and the background

Self-Supervised
Adversarnial Loss



Adversarial Training on Unlabelled Real data

* Problem
* 1. G_Real could settle on setting o = 1 everywhere
* 2. Initializing with G_Adobe and fine-tuning with a low learning rate,
not allow significant changes to generate good mattes on real data

Discri Real
GReal a F @ mi:,s:t:r T or
- Fake
Input Bl
1,B",S M) ..% ar2AR
G Adobs ——-a F : ‘ s Self-Supervised

Adversarial Loss



Adversarial Training on Unlabelled Real data

* Use G_Adobe for teacher-student learning.
* Obtain (F, " o) = G(X; 6_Adobe) to serve as “pseudo ground-truth”

Self-Supervised
Adversarial Loss




Adversarial Training on Unlabelled Real data

* Adversarial loss
* Loss on the output of G(X; BReal) compared to “pseudo ground-truth”

min E (D(aF + (1 — a)B) — 1)?

X.B~ =
BR.eal Px.B

+M2a—alli +4[V(e) = V()]
+IF = Fli+ [l - aF — (1 - a)B'|1}];

Self-Supervised
Adversarial Loss




Adversarial Training on Unlabelled Real data

* For the discriminator, we minimize:

Self-Supervised
Adversarial Loss




Result

Algorithm  Additional Inputs SAD MSE(10?)

BM Trimap-10, B 2.53 1.33
BM Trimap-20, B 2.86 1.13

BM Trimap-20, B’ 4.02 2.26
CAM Trimap-10 3.67 4.50
CAM Trimap-20 4.72 4.49
IM Trimap-10 1.92 1.16

IM Trimap-20 2.36 1.10
Ours-Adobe B 1.72 0.97
Ours-Adobe B’ 1.73 0.99

Table 1: Alpha matte error on Adobe Dataset (lower is better).



Real-Time High-Resolution
Background Matting

University of Washington



Motivation

* While many tools now provide background replacement
functionality
* yield artifacts at boundaries
* higher quality results, but do not run in real-time, at high resolution

* In this paper, we introduce the first fully-automated, real-time,
high-resolution matting technique.



Dataset

* VideoMatte240K

* 484 high-resolution green screen
* generate a total of 240,709 unique frames
* 384 videos are at 4K resolution and 100 are in HD

* PhotoMattel1l3K/85

* 13,665 Images shot with studio-quality lighting and cameras in front of a
green-screen

* narrow range of poses
* high resolution, averaging around 20002500



Dataset

Jo™ Y
A & 4
\;‘f / 2 -:-4 /{9}

(a) VideoMatte240K

(b) PhotoMatte13K/85

Figure 2: We introduce two large-scale matting datasets containing
240k unique frames and 13k unique photos.
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Base net

Background

Down sample

/

) -

' - - L J ~
Backbone ASPP Decoder

Input

B

Base

Resnet/MobileNet

* Alpha matte
* Foreground Residual

I'=aF+(1—a)B’
FR = F — 1.

F = max(min(Ff +1,1),0).

-+ ¢ Frror Map

Coarse QOutput

* Hidden Layer(32 channel)



Refinement Network

* select patch based on error map

* Input: [alpha, fgr, hid, src, bg] 1/2
* Crop 8 x 8 patch

* 3x3 conv, 3x3 conv, 0 pad

* 4 x 4 patch, upsample 8 x 8

* Concat [src, bg] 1

* 3x3 conv, 3x3 conv, 0 pad

* 4 x 4 patch, replace [alpha, fgr] 1
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| OSS

* Alpha loss
L, =|la—a*||1 +||Va—-Va*||;.
* Foreground Residual loss

Lr=|[(a®>0)%(F—F)|-. F = max(min(F® 4+ 1,1),0).
* Error map loss
Lg=|E—E"|. E* = |la — oF|.

* Loss function
‘Cbase — fraﬂ + EFE + [-EE.

EI’E‘:ﬁI‘JE‘: — Ea + EF-



Dataset Method| SAD MSE Grad Conn| MSE

DIM" [37.94 80.67 32935 37861 -
FBA" | 9.68 6.38 4265 7521| 1.94

Method Backbone Resolution FPS GMac AIM BGM 116.07 21.00 15371 14123 |47.98
BGM, |19.28 29.31 19877 18083|42.84

FBA HD 3.3 543 Ours [12.86 12.01 8426 11116| 5.31
FBA u0 HD 29 137.6
5 DIM' [43.70 86.22 49739 43914 -
BGM >12 7.8 4738 FBAT [11.03 832 6894 9892|12.51
ResNet-50% HD 60.0 343 Distinctions BGM  [19.21 25.89 30443 18191]36.13
Ours  ResNet-101 HD 425 440 BGM, |16.02 20.18 24845 14900(43.00
MobileNetV2Z ~ HD 1006 9.9 Ours | 9.19 7.08 6345 7216| 6.10
ResNet-50* 4K 332 415 DIM' [32.26 45.40 44658 30876| -
Ours  ResNet-101 4K 298 512 FBA" | 7.37 4.79 7323 5206| 7.03
MobileNetV2 4K 454 17.0
PhotoMatte85 BGM  [17.32 21.21 27454 15397|14.25
Table 3: Speed measured on Nvidia RTX 2080 TI as PyTorch BGM, (14.45 19.24 23314 13091{16.80
model pass-through without data transferring at FP32 precision Ours 8.65 9.57 8736 6637(13.82
and with batch size 1. GMac does not account for interpolation
and cropping operations. For the ease of measurement, BGM and Table 1: Quantitatzive evaluation‘on different datasets. * indicates
FBA.u, use adapted PyTorch DeepLabV3+ implementation with methods that require a manual trimap.

ResNet101 backbone as segmentation.



